Interleukin-1 receptor-associated kinase (IRAK) 4 mediates host defense against infections. As an active kinase, IRAK4 elicits full spectra of myeloid differentiation primary response protein (MyD) 88-dependent responses, while kinase-inactive IRAK4 induces a subset of cytokines and negative regulators whose expression is not regulated by mRNA stability. IRAK4 kinase activity is critical for resistance against Streptococcus pneumonia, but its involvement in autoimmunity is incompletely understood. In this study, we determined the role of IRAK4 kinase activity in murine lupus. Lupus development in BXSB mice expressing the Y chromosome autoimmunity accelerator (Yaa) increased basal and Toll-like receptor (TLR) 4/7-induced phosphorylation of mitogen-activated protein kinases, p65 nuclear factor-κB (NF-κB), enhanced tumor necrosis factor (TNF)-α and C-C motif chemokine ligand (CCL) 5 gene expression in splenic macrophages, but decreased levels of Toll-interacting protein and IRAK-M, without affecting IRAK4 or IRAK1 expression. Mice harboring kinase-inactive IRAK4 on the lupus-prone Yaa background manifested blunted TLR signaling in macrophages and reduced glomerulonephritis, splenomegaly, serum anti-nuclear antibodies, numbers of splenic macrophages, total and TNF-α+ dendritic cells, activated T- and B-lymphocytes, and lower TNF-α expression in macrophages compared to lupus-prone mice with functional IRAK4. Thus, IRAK4 kinase activity contributes to murine lupus and could represent a new therapeutic target.