When the benefits of interacting with out-group members exceed the associated costs, social groups may be expected to be tolerant towards each other. However, in many species exhibiting intergroup tolerance, the nature of benefits gained from intergroup encounters remains unclear. We investigated the potential costs and benefits associated with intergroup associations in bonobos, a species with varying degrees of intergroup tolerance, by testing whether these associations conferred energetic benefits to participants under different socioecological contexts and whether the consequences of these associations substantially differed from within-group competition. We used measures of socioecological factors (fruit abundance and group size), feeding and ranging behaviors, and a physiological marker of energy balance (urinary c-peptide of insulin) collected over a 19-month period from two neighboring wild communities in the Kokolopori Bonobo Reserve, Democratic Republic of the Congo. We found that intergroup associations were not related to individuals’ energy balance, but they were related to variations in individuals’ ranging and feeding behavior. Specifically, bonobos traveled longer distances, visited larger fruit patches, and increased the time spent feeding on fruits on days they associated with the neighboring group. These adaptations in feeding behavior may be strategies to offset the energetic costs of increased travel distances. In the absence of obvious energetic benefits and with clear strategies employed to offset energetic costs, it is likely that intergroup associations in bonobos provide benefits unrelated to energy acquisition, such as social benefits. Our study sheds light on the potential incentives promoting social networks to extend beyond and across groups in a tolerant species.
Significance statement
Intergroup encounters can be energetically costly due to increased competition over resources. Yet, some species associate with out-group individuals for extended periods of time when the benefits of participating in these associations exceed the potential costs. Bonobos, a species exhibiting intergroup tolerance, modified their feeding behavior during intergroup associations by feeding on larger fruit patches and increasing their time spent feeding on fruits, likely to offset energetic costs of increased travel distances. As results, individuals’ energy balance was not related with intergroup associations. The employment of such strategies in addition to the absence of clear energetic benefits suggests that intergroup associations in bonobos provide social rather than ecological benefits.