Post-traumatic seizures affect 12 -35% of children after traumatic brain injury (TBI) and are associated with worse cognitive and functional outcome, even after adjustment for severity of injury. Unfortunately, experimental models of pediatric post-traumatic epilepsy are lacking, and pathogenesis remains poorly understood. We have applied a standard model of TBI in immature rats to determine the effect of TBI on electroconvulsive seizure thresholds later in life.Male rats underwent controlled cortical impact to left parietal cortex on post-natal day (PND) 16-18. Hindbrain, forebrain, and limbic seizure thresholds were assessed, respectively, by tonic hindlimb extension (THE), minimal clonic, and partial psychomotor seizure responses during adolescence and at maturity (PND 60 -63). Post-traumatic seizure thresholds were compared to those obtained in age-and litter-matched sham craniotomy and naïve controls.TBI during immaturity had no clear effect on THE seizure thresholds. In contrast, TBI lowered minimal clonic seizure thresholds at maturity (p < 0.05 vs. sham or naïve rats), but not during adolescence. Consequently, minimal clonic seizure thresholds increased with age for sham and naïve rats but remained similar for TBI rats during adolescence and at maturity. TBI also tended to lower partial psychomotor seizure thresholds, which were determined only during adolescence (p < 0.1 vs. naive).Controlled cortical impact causes both focal cortical injury at the site of impact and ipsilateral hippocampal neuronal death. Since minimal clonic seizures are mediated by the forebrain, partial psychomotor seizures by the limbic system, and THE seizures by the brainstem, the observed pattern of changes in post-traumatic seizure thresholds is not surprising. The apparent age-dependent effects of TBI, however, are unexpected and likely due to a combination of attenuated maturational increases