Development of the mammalian embryo relies upon nutritive functions fulfilled by the visceral endoderm and then by the liver (1). A part of these functions is accomplished by nutrient carrier proteins of the albumin gene family, a multigene locus expressed by the liver and subject to precise developmental controls. One albumin-related gene, the ␣ 1 -fetoprotein (AFP) 1 gene, is activated at the onset of liver differentiation and operates tightly coupled with liver growth (2, 3). In 1988, our group circumscribed a proximal AFP promoter element essential to AFP gene activity in hepatocytes, and distinct from promoter components regulating the other albumin loci (4). The AFP-specific activator was then identified as orphan receptor fetoprotein transcription factor (5-7), so named for its first identified target locus (genome data base nomenclature, 2 NR5A2 in the nuclear receptor nomenclature, Ref. 9); also referred to as LRH1 or CPF). FTF belonged to a primitive class of nuclear receptors and emerged as a critical lead to connect AFP gene activation with early embryonic growth and differentiation processes.Subsequent studies indicated that developmental FTF functions even preceded its activation of the AFP locus in hepatocytes. In situ hybridization analysis in the mouse at embryonic day 8 -9 showed abundant FTF transcripts in the foregut endoderm, before liver morphogenesis (10). Characterization of the FTF gene promoter also revealed a cluster of regulatory motifs conserved in distant species and potential targets of cell lineage specification factors (11). Among these were three proximal binding sites for GATA factors, known to be essential for visceral endoderm function (12, 13). Furthermore, three HNF genes important to liver differentiation, HNF1␣, HNF4␣, and HNF3, were found to each contain double FTF-binding sites in their proximal promoter and to be activated by FTF in transfection assays (11). Thus, a pivotal role was suggested for FTF in a transcriptional cascade using determination factors to activate FTF in prehepatic endodermal cells, and then using FTF to drive AFP and other effectors of the hepatic program.