BackgroundChronic kidney disease (CKD) and coronary artery disease (CAD) are independently associated with increased vascular stiffness. We examined whether renal function contributes to vascular stiffness independently of CAD status.MethodsWe studied 160 patients with CAD and 169 subjects without CAD. The 4-variable MDRD formula was used to estimate glomerular filtration rate (eGFR); impaired renal function was defined as eGFR <60 mL/min. Carotid-femoral pulse wave velocity (PWV) was measured with the SphygmoCor® device. Circulating biomarkers were assessed in plasma using xMAP® multiplexing technology.ResultsPatients with CAD and impaired renal function had greater PWV compared to those with CAD and normal renal function (10.2 [9.1;11.2] vs 7.3 [6.9;7.7] m/s; P < 0.001). In all patients, PWV was a function of eGFR (β = −0.293; P < 0.001) even after adjustment for age, sex, systolic blood pressure, body mass index and presence or absence of CAD. Patients with CAD and impaired renal function had higher levels of adhesion and inflammatory molecules including E-selectin and osteopontin (all P < 0.05) compared to those with CAD alone, but had similar levels of markers of oxidative stress.ConclusionsRenal function is a determinant of vascular stiffness even in patients with severe atherosclerotic disease. This was paralleled by differences in markers of cell adhesion and inflammation. Increased vascular stiffness may therefore be linked to inflammatory remodeling of the vasculature in people with impaired renal function, irrespective of concomitant atherosclerotic disease.