Objective: To determine whether robotic stereotactic radiotherapy of 70-75 Gy delivered in five fractions results in an improved therapeutic ratio, compared with three fractions, in the treatment of peripheral non-small-cell lung cancer (NSCLC), in which case doses of up to 85 Gy in five fractions may be feasible. Materials and Methods: Between December 2006 and May 2010, 20 patients (9 female, 11 male, aged 65 to 88) were treated using the CyberKnife Õ Robotic Radiosurgery System for NSCLC with doses ranging from 67 Gy to 75 Gy based on location, histopathological type, grade of histopathological differentiation, tumor diameter/volume, and normal tissue constraints, with the doses being delivered in five fractions over 5 to 8 days. Tumor diameters ranged from 1.5 cm to 3.4 cm (median: 2.5 cm). Patients with Stage I to IV NSCLC were treated, and the results and observations were analyzed for clinical characteristics and outcomes including toxicity. All patients, except one who had refused surgery, had co-morbid conditions that precluded a lobectomy. Results: Twenty patients were followed every three months by positron emission tomography/computed tomography (PET/ CT). Mean follow-up was 23 months (range: four to 58 months). Local control was achieved in all treated tumors. Three patients expired, and three developed new regional metastases, none of which was within the planning target volume (PTV). The remainder of the patients demonstrated no evidence of recurrence or continued growth detectable by PET/ CT. There was no toxicity above Grade 1. Conclusions: It is feasible to treat peripheral NSCLC with individualized maximal tolerable doses ranging from 67 Gy to 75 Gy in five fractions chosen on the basis of location, histopathological type, grade of histopathological differentiation, tumor diameter/volume, and normal tissue constraints.