Mitochondria are complex organelles that participate in many cellular functions, ranging from ATP production to immune responses against viruses and bacteria. This integration of a plethora of functions within a single organelle makes mitochondria a very attractive target to manipulate for intracellular pathogens. We characterised the crosstalk that exists between Brucella abortus, the causative agent of brucellosis, and the mitochondria of infected cells. Brucella replicates in a compartment derived from the endoplasmic reticulum (ER) and modulates ER functionality by activating the unfolded protein response. However, the impact of Brucella on the mitochondrial population of infected cells still requires a systematic study. We observed physical contacts between Brucella containing vacuoles and mitochondria. We also found that B. abortus replication is independent of mitochondrial oxidative phosphorylation and that mitochondrial reactive oxygen species do not participate to the control of B. abortus infection in vitro. We demonstrated that B. abortus and B. melitensis induce a drastic mitochondrial fragmentation at 48 hours post-infection in different cell types, including myeloid and non-myeloid cells. This fragmentation is DRP1-independent and might be caused by a deficit of mitochondrial fusion. However, mitochondrial fragmentation does not change neither Brucella replication efficiency, nor the susceptibility of infected cells to TNFα-induced apoptosis.Mitochondria are essential organelles that evolved from an endosymbiotic α-proteobacterium of the Rickettsia genus 1 . Despite their subsequent evolution, mitochondria still share many similarities with prokaryotic cells, such as a double membrane, the capacity to produce ATP through oxidative phosphorylation (OXPHOS) and the presence of their own genome and bacterial-type ribosomes 2 . Mitochondria are highly dynamic organelles that continuously adapt their morphology and move to specific cellular sub-compartments, using different components of the cytoskeleton, to respond to cellular needs 3 . The mitochondrial morphology is controlled by the balance between mitochondrial fission and fusion and is mediated by large GTPases related to the dynamin superfamily. On the one hand, fusion occurs as a two-step