2023
DOI: 10.3389/fenrg.2023.1274425
|View full text |Cite
|
Sign up to set email alerts
|

Early warning research on enterprise carbon emission reduction credit risk based on deep learning model under unbalanced data

Zhi Long,
Xiangzhou Chen

Abstract: To enhance the precision of predicting enterprise credit risk related to carbon emission reduction, this study focuses on publicly traded companies. It introduces a risk early warning model grounded in MLP deep learning. Primarily, this research employs the FA-TOPSIS fusion model to comprehensively assess the credit risk associated with carbon emission reduction in enterprises. Subsequently, it employs K-means clustering to compute enterprise similarities, which forms the basis for supervised learning in the M… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 44 publications
0
0
0
Order By: Relevance