The Norway spruce is one of the most important tree species in Europe. This tree species has been put under considerable pressure due to the ongoing impacts of climate change. Meanwhile, frequent droughts and pest outbreaks are reported as the main reason for its dieback, resulting in severe forest cover loss. Such was the case with Norway spruce forests within the Kopaonik National Park (NP) in Serbia. This study aims to quantify, spatially and temporally, forest cover loss and to evaluate the sensitivity of various vegetation indices (VIs) in detecting drought-induced response and predicting the dieback of Norway spruce due to long-lasting drought effects in the Kopaonik NP. For this purpose, we downloaded and processed a large number of Landsat 7 (ETM+), Landsat 8 (OLI), and Sentinel 2 (MSI) satellite imagery acquired from 2009 to 2022. Our results revealed that forest cover loss was mainly driven by severe drought in 2011 and 2012, which was later significantly influenced by bark beetle outbreaks. Furthermore, various VIs proved to be very useful in monitoring and predicting forest health status. In summary, the drought-induced response detected using various VIs provides valuable insights into the dynamics of forest cover change, with implications for monitoring and conservation efforts of Norway spruce forests in the Kopaonik NP.