Earthquake forecast by imbalance machine learning using geophysical predictors
Tengiz Kiria,
Tamaz Chelidze,
George Melikadze
et al.
Abstract:In the present paper we consider the earthquake forecast as a binary problem of machine learning on the imbalanced data base applied to five regions of Georgia. For the training we used geophysical data base collected in 2017-2021, namely, variations of statistical characteristics of geomagnetic field components, seismic activity, water level in deep boreholes and tides. In this version a new predictor – the weighted seismic activity for previous 5 days - – is added compared to the predictors’ list used in pre… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.