Studies have demonstrated the potential of satellite thermal infrared observations to detect anomalous signals preceding large earthquakes. However, the lack of well-defined precursory characteristics and inherent complexity and stochasticity of the seismicity continue to impede robust earthquake forecasts. This study investigates the potential of pre-seismic thermal anomalies, derived from five satellite-based geophysical parameters, i.e., skin temperature, air temperature, total integrated column water vapor burden, outgoing longwave radiation (OLR), and clear-sky OLR, as valuable indicators for global earthquake forecasts. We employed a spatially self-adaptive multiparametric anomaly identification scheme to refine these anomalies, and then estimated the posterior probability of an earthquake occurrence given observed anomalies within a Bayesian framework. Our findings reveal a promising link between thermal signatures and global seismicity, with elevated forecast probabilities exceeding 0.1 and significant probability gains in some strong earthquake-prone regions. A time series analysis indicates probability stabilization after approximately six years. While no single parameter consistently dominates, each contributes precursory information, suggesting a promising avenue for a multi-parametric approach. Furthermore, novel anomaly indices incorporating probabilistic information significantly reduce false alarms and improve anomaly recognition. Despite remaining challenges in developing dynamic short-term probabilities, rigorously testing detection algorithms, and improving ensemble forecast strategies, this study provides compelling evidence for the potential of thermal anomalies to play a key role in global earthquake forecasts. The ability to reliably estimate earthquake forecast probabilities, given the ever-present threat of destructive earthquakes, holds considerable societal and ecological importance for mitigating earthquake risk and improving preparedness strategies.