In this study, the seismic response of the anchorage used for switchboard cabinets at a power plant was presented based on the results of an experiment and numerical simulations. In the experimental study, shaking table tests were performed to investigate the overall structural behavior of switchboard cabinets. The finite element modeling was conducted using the ABAQUS program, and in order to validate the proposed finite element model, the natural frequency, stress, and displacement were compared with the experimental results. A slight difference was found in the results due to the problem cup-like deformation at the anchorage of the bottom, but it showed reasonable agreement when considering the results for all behaviors. Using the proven model, nonlinear dynamic analysis was performed using three types of a period waves. The maximum stress on the anchorage occurred when a long-period wave was applied, and the horizontal maximum displacement of the cabinet was approximately 10 times greater than when an ultra-short-period wave was applied. It is expected that the flexibility of the cabinet stiffness resulted in more structural weakness, especially under a long-period wave, and that is recommended to focus on displacement rather than stress when establishing seismic design guidelines for switchboard cabinets.