2022
DOI: 10.3389/fpls.2022.1042332
|View full text |Cite
|
Sign up to set email alerts
|

EBE-YOLOv4: A lightweight detecting model for pine cones in forest

Abstract: Pine cones are important forest products, and the picking process is complex. Aiming at the multi-objective and dispersed characteristics of pine cones in the forest, a machine vision detection model (EBE-YOLOV4) is designed to solve the problems of many parameters and poor computing ability of the general YOLOv4, so as to realize rapid and accurate recognition of pine cones in the forest. Taking YOLOv4 as the basic framework, this method can realize a lightweight and accurate recognition model for pine cones … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 18 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?