In this work, magnesium alloy sheets of non-superplastic grade AZ31 were successfully formed by a proposed hybrid superplastic forming at 400 °C within 22 min. During the forming process, hot drawing first formed the part partially from the starting metal sheet within a few seconds, and then followed by a designed gas forming process to achieve the desired conical shape by high gas pressure at a targeted strain rate. The maximum thinning of 59 % was found to occur at the first contact area between the material and the punch. The thickness distribution and superplastic deformation behavior during the hybrid superplastic forming were investigated. In addition, the microstructure evolutions of AZ31 at different forming stages were examined by electron backscatter diffraction. Superplastic forming capability of the non-superplastic grade magnesium alloy was achieved. Furthermore, the part formed by this superplastic-like forming was done faster and attained a more even material distribution than conventional superplastic forming.