2015 International Conference on Automation, Cognitive Science, Optics, Micro Electro-Mechanical System, and Information Techno 2015
DOI: 10.1109/icacomit.2015.7440181
|View full text |Cite
|
Sign up to set email alerts
|

ECG signal classification using Hjorth Descriptor

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
41
0
4

Year Published

2016
2016
2024
2024

Publication Types

Select...
8
2

Relationship

3
7

Authors

Journals

citations
Cited by 39 publications
(45 citation statements)
references
References 11 publications
0
41
0
4
Order By: Relevance
“…Initially, it was used to analyze EEG signal characteristics. But in the research [15], [16] this method proved to have good performance in the case of processing ECG signals. Therefore, we use the Hjorth method on this proposed system.…”
Section: B Hjorth Descriptormentioning
confidence: 95%
“…Initially, it was used to analyze EEG signal characteristics. But in the research [15], [16] this method proved to have good performance in the case of processing ECG signals. Therefore, we use the Hjorth method on this proposed system.…”
Section: B Hjorth Descriptormentioning
confidence: 95%
“…Hasilnya didapat empat ciri terbaik dan akurasi meningkat menjadi 87.33% [18]. Dua penelitian berikutnya menggunakan Hjorth descriptor sebagai ciri, yaitu activity, mobility, dan complexity serta complexity pada orde yang lebih tinggi [19], [20]. Penggunaan tiga parameter Hjorth descriptor menghasilkan akurasi 100% sedangkan Complexity orde tinggi hanya menghasilkan akurasi 94%.…”
Section: Hasil Dan Diskusiunclassified
“…Nilai k yang diuji adalah 1, 3, dan 5. Dipilih nilai k yang ganjil agar mengurangi kesalahan algoritme jika peluang kemiripannya sama [8]. Metode yang digunakan untuk menghitung jarak ketetanggaan adalah sebagai berikut.…”
Section: Klasifikasi K-nearest Neighbour (K-nn)unclassified