ECG signal has the feature that is repeated in a cycle of P, Q, R, S, and T waves and is sampled at a high sampling frequency in general. By using the feature of periodic ECG signals, maximizing compression efficiency while minimizing the loss of important information for diagnosis is required. However, the periodic characteristics of such amplitude and period is not constant by measuring time and patients. Even though measured at the same time, the patient's characteristics display different periodic intervals. In this paper, an adaptive multi-level coding is provided by coding adaptively the dominant and non-dominant signal interval of the ECG signal. The proposed method can maximize the compression efficiency by using a multi-level code that applies different compression ratios considering information loss associated with the dominant signal intervals and non-dominant signal intervals. For the case of long time measurement, this method has a merit of maximizing compression ratio compared with existing compression methods that do not use the periodicity of the ECG signal and for the lossless compression coding of non-dominant signal intervals, the method has an advantage that can be stored without loss of information. The effectiveness of the ECG signal compression is proved throughout the experiment on ECG signal of MIT-BIH arrhythmia database.