Analysis of electrocardiogram and heart rate provides useful information about health condition of a patient. The North Sea Bicycle Race is an annual cycling competition in Norway. Examination of ECG recordings collected from participants of this race may allow defining and evaluating the relationship between physical endurance exercises and heart electrophysiology. Parameters reflecting potentially alarming deviations are to be identified in this study. This paper presents results of a time-domain analysis of ECG data collected in 2014, implementing K-Means clustering. A double stage analysis strategy, aimed at producing hierarchical clusters, is proposed. The first phase allows rough separation of data. Second stage is applied to reveal internal structure of the majority clusters. In both steps, discrepancies driving the separation could stem from three sources. Firstly, they could be signs of abnormalities in electrical activity of the heart. Secondly, they may allow discriminating between natural groups of participants-according to sex, age, physical fitness. Finally, some deviations could result from faults in data extraction, therefore serving in evaluation of the parameters. The clusters were defined predominantly by combinations of features: heartbeat signals correlation, P-wave shape, and RR intervals; none of the features alone was discriminative for all the clusters.