Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Objectives Novel noise reduction and QRS detection algorithms in Electrocardiogram (ECG) signal based on Empirical Mode Decomposition (EMD), Ensemble Empirical Mode Decomposition (EEMD) and the Modified Sigmoid Thresholding Function (MSTF) are proposed in this paper. Methods EMD and EEMD algorithms are used to decompose the noisy ECG signal into series of Intrinsic Mode Functions (IMFs). Then, these IMFs are thresholded by the MSTF for reduction of noises and preservation of QRS complexes. After that, the thresholded IMFs are used to obtain the clean ECG signal. The characteristic points P, Q, R, S and T peaks are detected using peak detection algorithm. Results The proposed methods are validated through experiments on the MIT-BIH arrhythmia database and Additive White Gaussian Noise (AWGN) is added to the clean ECG signal at different input SNR (SNR in). Standard performance parameters output SNR (SNR out), mean square error (MSE), root mean square error (RMSE), SNR improvement (SNR imp) and percentage root mean square difference (PRD) are employed for evaluation of the efficacy of the proposed methods. The results showed that the proposed methods provide significant quantitative and qualitative improvements in denoising performance, compared with existing state-of-the-art methods such as wavelet denoising, conventional EMD (EMD-Conv), conventional EEMD (EEMD-Conv, Stockwell Transform (ST) and Complete EEMD with Adaptative Noise with hybrid interval thresholding and higher order statistic to select relevant modes (CEEMDAN-HIT). Conclusions A detail quantitative analysis demonstrate that for abnormal ECG records 207 m and 214 m at input SNR of −2 dB the SNR imp value is 12.22 and 11.58 dB respectively, which indicates that the proposed algorithm can be used as an effective tool for denoising of ECG signals.
Objectives Novel noise reduction and QRS detection algorithms in Electrocardiogram (ECG) signal based on Empirical Mode Decomposition (EMD), Ensemble Empirical Mode Decomposition (EEMD) and the Modified Sigmoid Thresholding Function (MSTF) are proposed in this paper. Methods EMD and EEMD algorithms are used to decompose the noisy ECG signal into series of Intrinsic Mode Functions (IMFs). Then, these IMFs are thresholded by the MSTF for reduction of noises and preservation of QRS complexes. After that, the thresholded IMFs are used to obtain the clean ECG signal. The characteristic points P, Q, R, S and T peaks are detected using peak detection algorithm. Results The proposed methods are validated through experiments on the MIT-BIH arrhythmia database and Additive White Gaussian Noise (AWGN) is added to the clean ECG signal at different input SNR (SNR in). Standard performance parameters output SNR (SNR out), mean square error (MSE), root mean square error (RMSE), SNR improvement (SNR imp) and percentage root mean square difference (PRD) are employed for evaluation of the efficacy of the proposed methods. The results showed that the proposed methods provide significant quantitative and qualitative improvements in denoising performance, compared with existing state-of-the-art methods such as wavelet denoising, conventional EMD (EMD-Conv), conventional EEMD (EEMD-Conv, Stockwell Transform (ST) and Complete EEMD with Adaptative Noise with hybrid interval thresholding and higher order statistic to select relevant modes (CEEMDAN-HIT). Conclusions A detail quantitative analysis demonstrate that for abnormal ECG records 207 m and 214 m at input SNR of −2 dB the SNR imp value is 12.22 and 11.58 dB respectively, which indicates that the proposed algorithm can be used as an effective tool for denoising of ECG signals.
Globally, cardiovascular disease kills more than 500000 people every year, thus becoming the primary reason for death. Nevertheless, cardiovascular health monitoring is essential for accurate analysis and therapy of heart disease. In this work, a novel deep learning-based StrIppeD NAS-Network (SID-NASNet) for arrhythmia categorization into octa-classes with electrocardiogram (ECG) signals is presented. First, the ECG signals are recorded in real time using 12-lead electrodes. Then, the Discrete Wavelet Transform (DWT) is used to denoise the signals to reduce repetition and increase resilience. The noise-free ECG signals are fed into a K-means clustering algorithm to group ECG signal segments into a set number of clusters to identify patterns that may indicate heart abnormalities. Subsequently, the deep learning-based NASNet with Stripped convolutional layers is used to detect ECG irregularities of arrhythmia. Each sample point is examined for its local fractal dimension before extracting the heartbeat waveforms within a predetermined window length. A bio-inspired Dingo Optimization (DO) algorithm is used in the SID-NASNet to normalize the parameters to improve the efficiency of the network with low network complexity. The efficiency of the proposed SID-NASNet is assessed with specificity, accuracy, precision, F1 score and recall based on the MIT-BIH arrhythmia dataset. From the test results, the proposed SID-NASNet achieves an accuracy of 98.22% for effective categorization of ECG signals. The proposed SID-NASNet improves the overall accuracy of 1.24%, 3.76%, 1.87%, and 0.22% better than ECG-NET, Deep Learning (DL)-based GAN, 1D-CNN, and GAN-Long-Short Term Memory (LSTM), respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.