Background
Vaccine hesitancy is a growing global health threat that is increasingly studied through the monitoring and analysis of social media platforms. One understudied area is the impact of echo chambers and influential users on disseminating vaccine information in social networks. Assessing the temporal development of echo chambers and the influence of key users on their growth provides valuable insights into effective communication strategies to prevent increases in vaccine hesitancy. This also aligns with the World Health Organization’s (WHO) infodemiology research agenda, which aims to propose new methods for social listening.
Objective
Using data from a Taiwanese forum, this study aims to examine how engagement patterns of influential users, both within and across different COVID-19 stances, contribute to the formation of echo chambers over time.
Methods
Data for this study come from a Taiwanese forum called PTT. All vaccine-related posts on the “Gossiping” subforum were scraped from January 2021 to December 2022 using the keyword “vaccine.” A multilayer network model was constructed to assess the existence of echo chambers. Each layer represents either provaccination, vaccine hesitant, or antivaccination posts based on specific criteria. Layer-level metrics, such as average diversity and Spearman rank correlations, were used to measure chambering. To understand the behavior of influential users—or key nodes—in the network, the activity of high-diversity and hardliner nodes was analyzed.
Results
Overall, the provaccination and antivaccination layers are strongly polarized. This trend is temporal and becomes more apparent after November 2021. Diverse nodes primarily participate in discussions related to provaccination topics, both receiving comments and contributing to them. Interactions with the antivaccination layer are comparatively minimal, likely due to its smaller size, suggesting that the forum is a “healthy community.” Overall, diverse nodes exhibit cross-cutting engagement. By contrast, hardliners in the vaccine hesitant and antivaccination layers are more active in commenting within their own communities. This trend is temporal, showing an increase during the Omicron outbreak. Hardliner activity potentially reinforces their stances over time. Thus, there are opposing forces of chambering and cross-cutting.
Conclusions
Efforts should be made to moderate hardliner and influential nodes in the antivaccination layer and to support provaccination users engaged in cross-cutting exchanges. There are several limitations to this study. One is the bias of the platform used, and another is the lack of a comprehensive definition of “influence.” To address these issues, comparative studies across different platforms can be conducted, and various metrics of influence should be explored. Additionally, examining the impact of influential users on network structure and chambering through network simulations and regression analysis provides more robust insights. The study also lacks an explanation for the reasons behind chambering trends. Conducting content analysis can help to understand the nature of engagement and inform interventions to address echo chambers. These approaches align with and further the WHO infodemic research agenda.