Well-being is a complex, and multifaceted construct that includes feeling good and functioning well. There is a growing global recognition of well-being as an important research topic and public policy goal. Well-being is related to less behavioral and emotional problems, and is associated with many positive aspects of daily life, including longevity, higher educational achievement, happier marriage, and more productivity at work. People differ in their levels of well-being, i.e., some people are in general happier or more satisfied with their lives than others. These individual differences in well-being can arise from many different factors, including biological (genetic) influences and environmental influences. To enhance the development of future mental health prevention and intervention strategies to increase well-being, more knowledge about these determinants and factors underlying well-being is needed. In this dissertation, I aimed to increase the understanding of the etiology in a series of studies using different methods, including systematic reviews, meta-analyses, twin designs, and molecular genetic designs.
In part I, we brought together all published studies on the neural and physiological factors underlying well-being. This overview allowed us to critically investigate the claims made about the biology involved in well-being. The number of studies on the neural and physiological factors underlying well-being is increasing and the results point towards potential correlates of well-being. However, samples are often still small, and studies focus mostly on a single biomarker. Therefore, more well-powered, data-driven, and integrative studies across biological categories are needed to better understand the neural and physiological pathways that play a role in well-being.
In part II, we investigated the overlap between well-being and a range of other phenotypes to learn more about the etiology of well-being. We report a large overlap with phenotypes including optimism, resilience, and depressive symptoms. Furthermore, when removing the genetic overlap between well-being and depressive symptoms, we showed that well-being has unique genetic associations with a range of phenotypes, independently from depressive symptoms. These results can be helpful in designing more effective interventions to increase well-being, taking into account the overlap and possible causality with other phenotypes.
In part III, we used the extreme environmental change during the COVID-19 pandemic to investigate individual differences in the effects of such environmental changes on well-being. On average, we found a negative effect of the pandemic on different aspects of well-being, especially further into the pandemic. Whereas most previous studies only looked at this average negative effect of the pandemic on well-being, we focused on the individual differences as well. We reported large individual differences in the effects of the pandemic on well-being in both chapters. This indicates that one-size-fits-all preventions or interventions to maintain or increase well-being during the pandemic or lockdowns will not be successful for the whole population. Further research is needed for the identification of protective factors and resilience mechanisms to prevent further inequality during extreme environmental situations.
In part IV, we looked at the real-time assessment of well-being, investigating the feasibility and results of previous studies. The real-time assessment of well-being, related variables, and the environment can lead to new insights about well-being, i.e., results that we cannot capture with traditional survey research. The real-time assessment of well-being is therefore a promising area for future research to unravel the dynamic nature of well-being fluctuations and the interaction with the environment in daily life.
Integrating all results in this dissertation confirmed that well-being is a complex human trait that is influenced by many interrelated and interacting factors. Future directions to understand individual differences in well-being will be a data-driven approach to investigate the complex interplay of neural, physiological, genetic, and environmental factors in well-being.