One of the technical solutions to improve indoor thermal comfort and reduce energy consumption in buildings is the use of demand-controlled ventilation (DCV) systems. The choice of the control method becomes more important when the walls in the room are finished with moisture-buffering materials. This study explores the impact of four DCV system control scenarios (control of temperature, relative humidity, and carbon dioxide concentration for two different supply airflows to the room) combined with various indoor moisture-buffering materials (gypsum board and cement–lime plaster) on the variability of indoor air quality parameters, thermal comfort, and energy. The analysis was performed by computer simulation using WUFI Plus v.3.1.0.3 software for whole-building hydrothermal analysis. Control-based systems that maintain appropriate relative humidity levels were found to be the most favourable for localised comfort and were more effective in terms of energy consumption for heating and cooling without humidification and dehumidification. This research also revealed that the moisture-buffering effect of finishing materials can passively contribute to enhancing indoor air quality, regardless of the room’s purpose. However, higher energy consumption for heating was observed for better moisture-buffering materials.