Transmission of zoonotic cutaneous leishmaniasis (ZCL) depends on the presence, density and distribution of Leishmania major rodent reservoir and the development of these rodents is known to have a significant dependence on environmental and climate factors. ZCL in Tunisia is one of the most common forms of leishmaniasis. The aim of this paper was to build a regression model of ZCL cases to identify the relationship between ZCL occurrence and possible risk factors, and to develop a predicting model for ZCL's control and prevention purposes. Monthly reported ZCL cases, environmental and bioclimatic data were collected over 6 years (2009–2015). Three rural areas in the governorate of Sidi Bouzid were selected as the study area. Cross-correlation analysis was used to identify the relevant lagged effects of possible risk factors, associated with ZCL cases. Non-parametric modeling techniques known as generalized additive model (GAM) and generalized additive mixed models (GAMM) were applied in this work. These techniques have the ability to approximate the relationship between the predictors (inputs) and the response variable (output), and express the relationship mathematically. The goodness-of-fit of the constructed model was determined by Generalized cross-validation (GCV) score and residual test. There were a total of 1019 notified ZCL cases from July 2009 to June 2015. The results showed seasonal distribution of reported ZCL cases from August to January. The model highlighted that rodent density, average temperature, cumulative rainfall and average relative humidity, with different time lags, all play role in sustaining and increasing the ZCL incidence. The GAMM model could be applied to predict the occurrence of ZCL in central Tunisia and could help for the establishment of an early warning system to control and prevent ZCL in central Tunisia.