Mechanical pulping of raw wood material is a highly energy intensive and pollution generating step in the papermaking process. This study focused on combined mechanical and xylanase treatment prior to the kraft pulping of E. tereticornis. A screened pulp yield of 49.1% (on oven-dry wood basis) with a Kappa number of 24.9 was obtained at the optimum cooking temperature of 160 °C without any pretreatment of the wood chips. After mechanical treatment (destructuring), a slightly higher screened pulp yield (49.4%) was obtained with a Kappa number of 24.2 at the cooking temperature of 145 °C with the same active alkali charge (15%). The optimum cooking temperature was further reduced to 140 °C for the destructured xylanase-treated wood chips. The xylanase treatment resulted in a 2% reduction in screened pulp yield due to hydrolysis of xylan. However, the Kappa number was reduced to 18.2 after xylanase pretreatment of the mechanically destructured wood chips. The combined pretreatment (destructured and xylanase treatment) of wood chips resulted in a reduction in cooking temperature by 20°C compared to untreated wood chips. Such a reduction in cooking temperature can effectively reduce steam consumption. The combined pretreatment improved the pulp brightness by 2.0 (ISO points) and physical strength properties, which included the tensile index, tear index, and burst index by 11.06%, 21.72%, and 21.79%, respectively, compared to the control.