The significance of this study stems from the imperative to justify and advance agrobiological foundations aimed at enhancing the cultivation practices of Onobrychis viciifolia. There exists a compelling necessity to refine agronomic methodologies and streamline their comprehensive efficacy within the technological phases of cultivation. This study is aim to provide a critical analysis of scientific problem of substantiation of biological and organic foundations of the technology of Onobrychis viciifolia growing. Innovative technological interventions were formulated by extrapolating discerned patterns of influence pertaining to climatic and meteorological factors. Patterns governing the growth, development, and productivity formation of Onobrychis viciifolia were identified, and both the theoretical and practical principles of contemporary methods for cultivating perennial legumes were established. The chemical compound of aboveground biomass of Onobrychis viciifolia is varied depending on researched factors. Fertilization practically did not increase the productivity of Onobrychis viciifolia. The natural fertility of low-humus chernozem soil ensures the formation of a high, stable yield without fertilizing. This is the evidence that Onobrychis viciifolia compares favorably with other perennial legumes. Due to its biological characteristics, it is much more effective, especially in leveraging natural factors for the yield formation, i.e., it plays a significant role in the biologization of plant production, and in obtaining the most environmentally friendly, high-quality, yet cheap feed. The outcomes derived from the conducted research indicate that, under uniform soil conditions and varying fertilizer levels, the mowing height emerges as the predominant factor. The highest concentrations of nutrients within the overground biomass of Onobrychis viciifolia were noted at a cutting altitude of 11 centimeters. Concurrently, an elevation in crude protein and ash content was observed, accompanied by a concomitant reduction in the index of crude fiber.