Bare land, as a significant land cover type on the Earth’s surface, plays a crucial role in supporting land-use planning, urban management, and ecological environmental research through the investigation of its spatial distribution. However, due to the diversity of land-cover types on the Earth’s surface and the spectral complexity exhibited by bare land under the influence of environmental factors, it is prone to confusion with urban and other land features. In order to extract bare land rapidly and efficiently, this study introduces a novel bare land extraction index called the Bare Land Extraction Index (BLEI). Then, considering both Ganzi Tibetan Autonomous Prefecture and Urumqi, China as the study areas, we compared BLEI with three presented indices: the Bare-soil Index (BI), Dry Bare Soil Index (DBSI), and Bare Soil Index (BSI). The results show that BLEI exhibits excellent efficacy in distinguishing bare land and urban areas. It gets the most outstanding accuracy in bare land identification and mapping, with overall accuracy (OA), kappa coefficient, and F1-score of 98.91%, 0.97, and 97.89%, respectively. Furthermore, BLEI is also effective in distinguishing bare land from sandy soil, which can not only improve the mapping accuracy of bare land in soil-deserted areas but also provide technological support for soil research and land-use planning.