The decline of habitats supporting medicinal plants is a consequence of climate change and human activities. In the Middle East, Ferulago angulata, Ferulago carduchorum, and Ferulago phialocarpa are widely recognized for their culinary, medicinal, and economic value. Therefore, this study models these Ferulago species in Iran using the MaxEnt model under two representative concentration pathways (RCP4.5 and RCP8.5) for 2050 and 2070. The objective was to identify the most important bioclimatic (n = 6), edaphic (n = 4), and topographic (n = 3) variables influencing their distribution and predict changes under various climate scenarios. Findings reveal slope percentage as the most significant variable for F. angulata and F. carduchorum, while solar radiation was the primary variable for F. phialocarpa. MaxEnt modeling demonstrated good to excellent performance, as indicated by all the area under the curve values exceeding 0.85. Projections suggest negative area changes for F. angulata and F. carduchorum (i.e., predictions under RCP4.5 for 2050 and 2070 indicate −34.0% and −37.8% for F. phialocarpa, and −0.3% and −6.2% for F. carduchorum; additionally, predictions under RCP 8.5 for 2050 and 2070 show −39.0% and −52.2% for F. phialocarpa, and −1.33% and −9.8% for F. carduchorum), while for F. phialocarpa, a potential habitat increase (i.e., predictions under RCP4.5 for 2050 and 2070 are 23.4% and 11.2%, and under RCP 8.5 for 2050 and 2070 are 64.4% and 42.1%) is anticipated. These insights guide adaptive management strategies, emphasizing conservation and sustainable use amid global climate change. Special attention should be paid to F. angulata and F. carduchorum due to anticipated habitat loss. Integr Environ Assess Manag 2024;00:1–14. © 2024 SETAC