This article addresses total fish Hg concentrations (THg) by variations in lake Sediment THg, atmospheric Hg deposition (atmHg dep ), and climate, i.e., mean annual precipitation (ppt) and air temperature. The Fish THg data were taken from the 1967-to-2010 Fish Mercury Datalayer (FIMDAC). This compilation was standardized for 12-cm long Yellow Perch in accordance with the USGS National Descriptive Model for Mercury in Fish (NDMMF [1]), and documents Fish THg across 1936 non-contaminated lakes in Canada. About 40% of the standardized Fish THg variations related positively to increasing ppt and Sediment THg, but negatively to increasing mean annual July temperature (T July ). Only 20% of the Fish THg variations related positively to atmHg dep alone. Increasing T July likely influences Fish Hg through increased lake and upslope Hg volatilization, in-fish growth dilution, and temperature-induced demethylization. FIMDAC Fish THg effectively did not change over time while atmHg dep decreased. Similarly, the above Fish Hg trends would likely not change much based on projecting the above observations into the future using current 2070 climate-change projections across Canada and the continental US. Regionally, the projected changes in Fish Hg would mostly increase with increasing ppt. Additional not-yet mapped increases are expected to occur in subarctic regions subject to increasing permafrost decline. Locally, Fish THg would continue to be affected by upwind and upslope pollution sources, and by lake-by-lake changes in water aeration and rates of lake-water inversions.