Soil is an important natural resource in the agricultural areas of northwest China. The heavy metal concentration and ecological risk assessments are crucial for food safety and human health. This work collected 35 surface soil samples and focused on a typical soda soil quality of the Hetao Plain in Bayannur, which is an important grain production base in northern China. The concentration and composition of heavy metal (arsenic (As), cobalt (Co), copper (Cu), lead (Pb), cadmium (Cd), chromium (Cr), mercury (Hg), nickel (Ni), zinc (Zn)), soluble salts, total organic carbon (TOC), and minerals of the surface soils were analyzed to assess the biotoxicity, ecological risk, sources, and influencing factors of heavy metals in these soda soil from this region. The enrichment factors (EF) showed that As, Co, Cu, and Pb were not contaminated in these soils, while Cd, Cr, Hg, Ni, and Zn were lightly contaminated. The index of geoaccumulation (Igeo) for the soda soils indicated that Co and Pb were uncontaminated, and Cr, Cd, Ni, Zn, Hg, Cu, and As were lightly contaminated. The potential ecological risk index (RI) indicated there were no or low risks for As, Co, Cr, Cu, Ni, Pb, and Zn. Although the concentrations of Cd and Hg in the soil were low, the two heavy metals exhibited moderate–high ecological risk because they have high biological toxicity. Cd in the soils from Hetao Plain in Bayannur is mainly exchangeable and reducible fractions. The other heavy metals in these soda soils are mainly in residue fraction, implying that their mobility is low and not easily absorbed and used by plants. Heavy metal fractions, principal component analysis (PCA), and correlation analysis showed that As, Co, Cr, Cu, and Pb were mainly from natural sources, while Ni, Cd, and Zn were mainly from anthropogenic discharge-related irrigation, fertilizers, and pesticide application, and Hg was mainly from winter snowfall in the study area. Naturally sourced metal elements have obvious sediment properties, and their adsorption by clay minerals and coupling with organic matter along with sediment transport sorting. The salinity and pH of soda soils in the study area have a highly positive correlation, hence the influence of factors on the concentrations of soil heavy metals are consistent. For anthropogenically imported heavy metals, increasing salinity and pH promote the precipitation of metallic elements in water. Cd is present as an exchangeable and reducible fraction, while Ni and Zn are mainly sequestered by organic matter and clay minerals.