Leaf stoichiometry (nitrogen (N), phosphorus (P) and N:P ratio) is not only important for studying nutrient composition in forests, but also reflects plant biochemical adaptation to geographic and climate conditions. However, patterns of leaf stoichiometry and controlling factors are still unclear for most species. In this study, we determined leaf N and P stoichiometry and their relationship with soil properties, geographic and climate variables for Cyclocarya paliurus based on a nation-wide dataset from 30 natural populations in China. The mean values of N and P concentrations and N:P ratios were 9.57 mg g−1, 0.91 mg g−1 and 10.51, respectively, indicating that both leaf N and P concentrations in C. paliurus forests were lower than those of China and the global flora, and almost all populations were limited in N concentration. We found significant differences in leaf N and P concentrations and N:P ratios among the sampled C. paliurus populations. However, there were no significant correlations between soil properties (including organic C, total N and P concentrations) and leaf stoichiometry. The pattern of variation in leaf N concentration across the populations was positively correlated with latitude (24.46° N–32.42° N), but negatively correlated with mean annual temperature (MAT); meanwhile, leaf N concentration and N:P ratios were negatively correlated with mean temperature in January (MTmin) and mean annual frost-free period (MAF). Together, these results suggested that temperature-physiological stoichiometry with a latitudinal trend hold true at both global and regional levels. In addition, the relationships between leaf stoichiometry and climate variables provided information on how leaf stoichiometry of this species may respond to climate change.