Background: Determining the habitat use of mobile marine species is important for understanding responses to climate change and aids the implementation of management and conservation measures. Inference of preferred habitat use has been greatly improved by combining satellite-based oceanographic data with animal tracking techniques. Although there have been several satellite-tracking studies on ocean sunfish Mola mola, limited information is available about either horizontal or vertical environmental preferences. In this study, both geographical movements and diving behaviour of ocean sunfish were explored together with the environmental factors influencing this species' space use in the north-east Atlantic.
Results:Habitat selection of electronic-tagged sunfish (n = 22 individuals; 0.6-1.4 m total length, TL) was investigated using geolocations from Argos-linked and pop-up satellite archival transmitters. Satellite tracking (up to 171 days, mean 66 days) revealed seasonal movements: northward in spring-summer and southward in cooler months. Sunfish spent extended periods in three focal areas, the Gulf of Cadiz, north-east Iberia and the Alboran gyre, which are characterised by the presence of frontal features with elevated primary production. Habitat modelling revealed that sea surface temperature and thermal gradients significantly influenced sunfish distribution. Diving profiles, extending from the surface to a maximum depth of 704 m, revealed different depth-use patterns not linked to geographical region or water column stratification. Overall, a size-related movement pattern was detected with larger individuals (>0.92 m TL) travelling further, exploiting greater depth ranges and spending more time at depth than smaller fish.
Conclusions:Ocean sunfish in the north-east Atlantic displayed seasonal movements, primarily driven by thermal preferences, extending into higher latitudes in summer. Moreover, fish also occupied productive frontal areas for long periods, presumably for improved foraging opportunities. Lastly, sunfish showed considerable variability in diving patterns which likely reflect the tracking of planktonic prey distributions.