2024
DOI: 10.1002/for.3211
|View full text |Cite
|
Sign up to set email alerts
|

Economic Forecasting With German Newspaper Articles

Tino Berger,
Simon Wintter

Abstract: We introduce a new leading indicator for the German business cycle based on the content of newspaper articles from the Süddeutsche Zeitung. We use the rapidly evolving technique of Natural Language Processing (NLP) to transform the content of daily newspaper articles between 1992 and 2021 into topic time series using an LDA model. These topic time series reflect broad areas of the German economy since 1992, in particular the recession phases of the High‐Tech Crisis, the Great Financial Crisis and the Covid‐19 … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 32 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?