A comprehensive testing program to determine the fatigue crack growth rate (FCGR) of pipeline steels in pressurized hydrogen gas was completed. Four steels were selected, two X52 and two X70 alloys. Other variables included hydrogen gas pressures of 5.5 MPa and 34 MPa, a load ratio, R, of 0.5, and cyclic loading frequencies of 1 Hz, 0.1 Hz, and 0.01 Hz. Of particular interest was whether the X70 materials would exhibit higher FCGRs than the X52 materials. The American Petroleum Institute steel designations are based on specified minimum yield strength (SMYS), and monotonic tensile tests have historically shown that loss of ductility correlates with an increase in yield strength when tested in a hydrogen environment. The X70 materials performed within the experimental spread of the X52 materials in FCGR, except for the vintage X52 material at low (5.5 MPa) pressure in hydrogen gas. This program was developed in order to provide a modification to the ASME B31.12 code that is based upon fatigue, the primary failure mechanism in pipelines. The code modification is a three-part Paris law fit of the upper bound of measurements of FCGR of pipeline steels in pressurized hydrogen gas. Fatigue crack growth data up to 21 MPa (3000 psi) are used for the upper bound. This paper describes, in detail, the testing that formed the basis for the code modification.