2016
DOI: 10.1007/s00521-016-2611-2
|View full text |Cite
|
Sign up to set email alerts
|

Economic load dispatch problems with valve-point loading using natural updated harmony search

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
4
1

Citation Types

0
36
0
4

Year Published

2018
2018
2022
2022

Publication Types

Select...
4
4

Relationship

0
8

Authors

Journals

citations
Cited by 71 publications
(40 citation statements)
references
References 100 publications
0
36
0
4
Order By: Relevance
“…The ant lion optimization algorithm (ALOA) [31] was also a new method with few applications, and the method in the study has not shown its potential search ability persuasively due to simple test employment. In addition, many new methods have been developed for solving the problem such as modified symbiotic organisms search algorithm (MSOSA) [32], mine blast algorithm (MBA) [33], clonal algorithm (CA) [34], mathematical programming algorithm (MPA) [35], improved quantuminspired evolutionary algorithm (IQIEA) [36], cuckoo optimization algorithm (COA) [37], improved colliding bodies optimization algorithm (ICBOA) [38], flower pollination algorithm (FPA) [39], natural updated harmony search (NUHS) [40], lightning flash algorithm (LFA) [41,42], moth swarm algorithm (MSA) [43], and orthogonal learning competitive swarm optimization algorithm (OLCSOA) [44]. [45].…”
Section: Introductionmentioning
confidence: 99%
“…The ant lion optimization algorithm (ALOA) [31] was also a new method with few applications, and the method in the study has not shown its potential search ability persuasively due to simple test employment. In addition, many new methods have been developed for solving the problem such as modified symbiotic organisms search algorithm (MSOSA) [32], mine blast algorithm (MBA) [33], clonal algorithm (CA) [34], mathematical programming algorithm (MPA) [35], improved quantuminspired evolutionary algorithm (IQIEA) [36], cuckoo optimization algorithm (COA) [37], improved colliding bodies optimization algorithm (ICBOA) [38], flower pollination algorithm (FPA) [39], natural updated harmony search (NUHS) [40], lightning flash algorithm (LFA) [41,42], moth swarm algorithm (MSA) [43], and orthogonal learning competitive swarm optimization algorithm (OLCSOA) [44]. [45].…”
Section: Introductionmentioning
confidence: 99%
“…Bu da ekonomik dağıtım ile yapılmaktadır. Ekonomik dağıtım, sistemden talep edilen gücün, jeneratörlerin çalışma sınırları gibi kısıtlar altında, minimum maliyetle karşılanmasının planlanmasını amaç edinmektedir [1,2,7,8]. EDP ise doğrusal olmayan (non-lineer), eşitlik ve eşitsizlik kısıtlamaları altında, yakıt maliyetini minimum yapan bir optimizasyon problemidir [1-3, 7, 12].…”
Section: Bus Turkey Wind-thermal Power System)unclassified
“…Fakat bu geleneksel yöntemlerin çözümleri özellikle büyük sistemler için optimum sonuçtan çok uzak olmakta ve hesaplama süresi fazla olmaktadır [7]. Bundan dolayı ekonomik dağıtım problemlerinin optimum sonuca daha yakın, etkili ve hızlı çözümleri için yapay zekâ temelli sezgisel optimizasyon yöntemleri kullanılmaktadır [8]. EDP çözümünde kullanılan sezgisel optimizasyon yöntemlerinden bazıları şunlardır: Genetik algoritma (GA) [9], parçacık sürü optimizasyonu (PSO) [1], karınca koloni algoritması (KKA) [10], yapay arı koloni algoritması (YAK) [11], yerçekimsel arama algoritması (YAA) [12], öğretmeöğrenme tabanlı optimizasyon algoritması (ÖÖTO) [13].…”
Section: Gi̇ri̇ş (Introduction)unclassified
See 1 more Smart Citation
“…The ELD optimization problem is in one of the difficult constraints-based optimization systems in the power sector that usually needs excessive computations because of the nature of the cost functions and inherent non-smooth properties. A number of studies have introduced a variety of optimization procedures for ELD problems with and without valve point loading effect (VPLE) based on conventional and recently introduced meta-heuristics schemes, such as Newton methods [4,5], genetic algorithms [6], biogeography-based optimization algorithms [7], teaching learning based optimization methods [8], grey-wolf optimization algorithms [9], ant lion optimization procedures [10], modified krill herd algorithms [11,12], natural updated harmony searches [13], improved differential evolution [14], mine blast algorithms [15], and crow-search algorithms [16].…”
Section: Introductionmentioning
confidence: 99%