The aim of this manuscript is to introduce solutions to optimize economic dispatch of loads and combined emissions (CEED) in thermal generators. We use metaheuristics, such as particle swarm optimization (PSO), ant lion optimization (ALO), dragonfly algorithm (DA), and differential evolution (DE), which are normally used for comparative simulations, and evaluation of CEED optimization, generated in MATLAB. For this study, we used a hybrid model composed of six (06) thermal units and thirteen (13) photovoltaic solar plants (PSP), considering emissions of contaminants into the air and the reduction in the total cost of combustibles. The implementation of a new method that identifies and turns off the least efficient thermal generators allows metaheuristic techniques to determine the value of the optimal power of the other generators, thereby reducing the level of pollutants in the atmosphere. The results are presented in comparative charts of the methods, where the power, emissions, and costs of the thermal plants are analyzed. Finally, the comparative results of the methods were analyzed to characterize the efficiency of the proposed algorithm.