The present study evaluated engineered media for plant biofilter optimisation in an unvegetated column experiment to assess the performance of loamy sand, perlite, vermiculite, zeolite and attapulgite media under stormwater conditions enriched with varying nutrients and metals reflecting urban pollutant loads. Sixty columns, 30 unvegetated and 30 Juncus effusus vegetated, were used to test: pollutant removal, infiltration rate, particulate discharge, effluent clarity and plant functional response, over six sampling rounds. All engineered media outperformed conventional loamy sand across criteria, with engineered attapulgite consistently among the best performers. No reportable difference existed in vegetation exposed to different material combinations. For all media, the results show a net removal of NH3-N, PO43−-P, Cd, Cu, Pb and Zn and an increase of NO3−-N, emphasizing the importance of vegetation in biofilters. Growth media supporting increased rate of infiltration whilst maintaining effective remediation performance offers potential for reducing the area required by biofilters, currently recommended at 2% of its catchment area, encouraging the use of small-scale green infrastructure in the urban area. Further research is required to assess the carrying capacity of engineered media in laboratory and field settings, particularly during seasonal change, gauging the substrate's potential moisture availability for root uptake.