Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
An innovative coiled tubing (CT) real-time flow measurement tool was introduced in Ecuador to reformulate the stimulation workflow in water injectors, which comprised evaluation and treatment. This new technology enabled an integrated, single-run workflow instead: initial injectivity measurements, diagnostics, treatment, post-stimulation injectivity measurements, and final diagnostics. This novel, rigless approach reduced equipment footprint, operational time, and cost, and it improved production as compared to the conventional approach, despite accrued capital discipline constraints. Conventionally, operators rely on workover rigs and multiple product lines to diagnose, stimulate, and evaluate injector wells. Several challenges and inefficiencies were addressed by deploying the CT real-time flow measurement tool. Each intervention was designed to be completed with a single CT run, and without the need for a workover rig, thus saving costs and time. Tailored diversion methods substituted the need for drillpipe to set mechanical packers. Prestimulation injection logging test (ILT) results obtained with that innovative tool, coupled with real-time control of depth and high-pressure jetting during execution, enabled effective placement of the stimulation treatment. Ultimately, post-treatment ILTs confirmed treatment effectiveness and final wellbore downhole conditions. Introduction of the CT real-time downhole flow measurement tool allowed operational objectives to be met in a single run, without additional interventions, with or without a workover rig on site. When workover rigs were present, this improved workflow saved an average of 15% operational time. In cases without a workover rig, 105 hours of rig time were saved (without considering rig mobilization time). Four case studies are presented. The first two cases demonstrate how acquisition of ILTs throughout the intervention enabled optimization of fluid placement and introduction of diverter methods. The third case covers a scenario where there was an initially low injectivity and highlights the challenges and lessons associated with recovering injectivity. The fourth case presents challenges unique to flowmeter measurements in heavy-oil environments. In each case, effectiveness of the optimized treatment was measured by two metrics: improvements in net injectivity and uniformity of injection profile, both of which drive the effectiveness of secondary recovery in connected producer wells. On average, wells intervened with this approach featured an improvement in injectivity of 301% (compare to 226% conventionally) and in their injection profile homogeneity by 13%. As a result, the productivity in connected wells improved by as much as 74%, and an average of 39% (compared to 14% conventionally). This innovative workflow is a step-change over conventional approaches to rejuvenate waterflooding. It combines the capabilities of delivering treatments via CT and the power of real-time downhole flow measurements to break the paradigm of multi-line, multi-run operations to remediate and stimulate injector wells. This yields logistically leaner operations, which are less costly, and it enables breakthroughs in secondary recovery through data-enriched interventions in times of budget pressure, not only in Ecuador, but also across the globe.
An innovative coiled tubing (CT) real-time flow measurement tool was introduced in Ecuador to reformulate the stimulation workflow in water injectors, which comprised evaluation and treatment. This new technology enabled an integrated, single-run workflow instead: initial injectivity measurements, diagnostics, treatment, post-stimulation injectivity measurements, and final diagnostics. This novel, rigless approach reduced equipment footprint, operational time, and cost, and it improved production as compared to the conventional approach, despite accrued capital discipline constraints. Conventionally, operators rely on workover rigs and multiple product lines to diagnose, stimulate, and evaluate injector wells. Several challenges and inefficiencies were addressed by deploying the CT real-time flow measurement tool. Each intervention was designed to be completed with a single CT run, and without the need for a workover rig, thus saving costs and time. Tailored diversion methods substituted the need for drillpipe to set mechanical packers. Prestimulation injection logging test (ILT) results obtained with that innovative tool, coupled with real-time control of depth and high-pressure jetting during execution, enabled effective placement of the stimulation treatment. Ultimately, post-treatment ILTs confirmed treatment effectiveness and final wellbore downhole conditions. Introduction of the CT real-time downhole flow measurement tool allowed operational objectives to be met in a single run, without additional interventions, with or without a workover rig on site. When workover rigs were present, this improved workflow saved an average of 15% operational time. In cases without a workover rig, 105 hours of rig time were saved (without considering rig mobilization time). Four case studies are presented. The first two cases demonstrate how acquisition of ILTs throughout the intervention enabled optimization of fluid placement and introduction of diverter methods. The third case covers a scenario where there was an initially low injectivity and highlights the challenges and lessons associated with recovering injectivity. The fourth case presents challenges unique to flowmeter measurements in heavy-oil environments. In each case, effectiveness of the optimized treatment was measured by two metrics: improvements in net injectivity and uniformity of injection profile, both of which drive the effectiveness of secondary recovery in connected producer wells. On average, wells intervened with this approach featured an improvement in injectivity of 301% (compare to 226% conventionally) and in their injection profile homogeneity by 13%. As a result, the productivity in connected wells improved by as much as 74%, and an average of 39% (compared to 14% conventionally). This innovative workflow is a step-change over conventional approaches to rejuvenate waterflooding. It combines the capabilities of delivering treatments via CT and the power of real-time downhole flow measurements to break the paradigm of multi-line, multi-run operations to remediate and stimulate injector wells. This yields logistically leaner operations, which are less costly, and it enables breakthroughs in secondary recovery through data-enriched interventions in times of budget pressure, not only in Ecuador, but also across the globe.
Summary An innovative coiled tubing (CT) real-time flow measurement tool was introduced in Ecuador to reformulate the stimulation workflow in water injectors, which comprised evaluation and treatment. This new technology enabled an integrated, single-run workflow instead—initial injectivity measurements, diagnostics, treatment, post-stimulation injectivity measurements, and final diagnostics. This novel, rigless approach reduced equipment footprint, operational time, and cost, and it improved production as compared with the conventional approach, despite accrued capital discipline constraints. Conventionally, operators rely on workover rigs and multiple product lines to diagnose, stimulate, and evaluate injector wells. Several challenges and inefficiencies were addressed by deploying the CT real-time flow measurement tool. Each intervention was designed to be completed with a single CT run and without the need for a workover rig, thus saving cost and time. Tailored diversion methods substituted the need for drillpipe to set mechanical packers. Prestimulation injection logging test (ILT) results obtained with that innovative tool, coupled with real-time control of depth and high-pressure jetting during execution, enabled effective placement of the stimulation treatment. Ultimately, post-treatment ILTs confirmed treatment effectiveness and final wellbore downhole conditions. Introduction of the CT real-time downhole flow measurement tool allowed operational objectives to be met in a single run, without additional interventions, with or without a workover rig on site. When workover rigs were present, this improved workflow saved an average of 15% operational time. In cases without a workover rig, 105 hours of rig time were saved (without considering rig mobilization time). Four case studies are presented. The first two cases demonstrate how acquisition of ILTs throughout the intervention enabled optimization of fluid placement and introduction of diverter methods. The third case covers a scenario where there was an initially low injectivity and highlights the challenges and lessons associated with recovering injectivity. The fourth case presents challenges unique to flowmeter measurements in heavy-oil environments. In each case, effectiveness of the optimized treatment was measured by two metrics: improvements in net injectivity and uniformity of injection profile, both of which drive the effectiveness of secondary recovery in connected producer wells. On average, wells intervened with this approach featured an improvement in injectivity of 301% (compared with 226% conventionally) and in their injection profile homogeneity by 13%. As a result, the productivity in connected wells improved by as much as 74% and an average of 39% (compared with 14% conventionally). This innovative workflow is a step change over conventional approaches to rejuvenate waterflooding. It combines the capabilities of delivering treatments via CT and the power of real-time downhole flow measurements to break the paradigm of multiline, multirun operations to remediate and stimulate injector wells. This yields logistically leaner operations, which are less costly, and it enables breakthroughs in secondary recovery through data-enriched interventions in times of budget pressure, not only in Ecuador, but also across the globe.
This study evaluates the effectiveness of dump-flood and water injection techniques for enhanced oil recovery in Field ABX2 of the Niger Delta basin. Using advanced numerical reservoir modeling, the performance of ESP-powered dump-flooding was compared against conventional water injection over a 20-year period. Both methods successfully maintained reservoir pressure above the critical bubble point of 3471 psi, preventing excessive gas production. Primary recovery extracted only 15% of original oil in place (OOIP), while ESP-powered dump-flooding and water injection improved recovery to 34% and 35% of OOIP respectively after 20 years. Both secondary recovery methods exhibited excellent areal sweep efficiency and kept oil above the oil-water contact. The dump-flood approach achieved comparable results to water injection but with lower infrastructure requirements and costs. The models indicate the substantial aquifer in Field ABX2 can sustain dump-flooding for the full 20-year period. This study demonstrates ESP-assisted dump-flooding as a promising and economical enhanced oil recovery technique for Niger Delta reservoirs. The modeling approach developed here integrates reservoir characterization, well completion design, and long-term production forecasting to optimize recovery strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.