Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Managing rare genetic diseases with organ centric focus presents a challenge in linking genotypes to phenotypic traits. Ayurveda on the other hand, diagnose diseases with multi-system perspective that are assessed by perturbations along three physiological dimensions viz- kinetic (Vata), metabolic (Pitta) and structural (Kapha) each with distinct phenotypic attributes and molecular correlates. This study explores how rare diseases, can be viewed from an Ayurvedic perspective by unifying the medical terminologies from both disciplines through Human Phenotype Ontology (HPO). Domain experts categorized 10,610 HPO terms into phenotypic groups based on Ayurvedic principles of Vata (V), Pitta (P), and Kapha (K) and used the Expectation Maximization (EM) algorithm to cluster and analyze 12,678 diseases. This revealed six distinct clusters collectively called "AyurPhenoClusters". 2814 diseases had unique memberships to single clusters showing enrichment for V/P/K phenotypes. Clusterwise functional annotation revealed the top processes as (i) embryogenesis and skeletal system, morphogenesis; (ii) endocrine and ciliary functions (iii) DNA damage response and cell cycle regulation (iv) inflammation and immune response (v) immune, hemopoiesis, telomere aging (vi) Small molecule metabolism and transport. Most noteworthy, K predominant cluster was significantly enriched for ciliary genes (43%) followed by a V predominant cluster (16 %). Our study also suggests that many rare diseases especially in the V cluster could be potential ciliopathies. This first of its kind of study provides an innovative framework that can bridge the gap between Ayurveda and modern medicine for improved mechanistic understanding of the rare diseases and pave the way for improved diagnostic and therapeutic strategies.
Managing rare genetic diseases with organ centric focus presents a challenge in linking genotypes to phenotypic traits. Ayurveda on the other hand, diagnose diseases with multi-system perspective that are assessed by perturbations along three physiological dimensions viz- kinetic (Vata), metabolic (Pitta) and structural (Kapha) each with distinct phenotypic attributes and molecular correlates. This study explores how rare diseases, can be viewed from an Ayurvedic perspective by unifying the medical terminologies from both disciplines through Human Phenotype Ontology (HPO). Domain experts categorized 10,610 HPO terms into phenotypic groups based on Ayurvedic principles of Vata (V), Pitta (P), and Kapha (K) and used the Expectation Maximization (EM) algorithm to cluster and analyze 12,678 diseases. This revealed six distinct clusters collectively called "AyurPhenoClusters". 2814 diseases had unique memberships to single clusters showing enrichment for V/P/K phenotypes. Clusterwise functional annotation revealed the top processes as (i) embryogenesis and skeletal system, morphogenesis; (ii) endocrine and ciliary functions (iii) DNA damage response and cell cycle regulation (iv) inflammation and immune response (v) immune, hemopoiesis, telomere aging (vi) Small molecule metabolism and transport. Most noteworthy, K predominant cluster was significantly enriched for ciliary genes (43%) followed by a V predominant cluster (16 %). Our study also suggests that many rare diseases especially in the V cluster could be potential ciliopathies. This first of its kind of study provides an innovative framework that can bridge the gap between Ayurveda and modern medicine for improved mechanistic understanding of the rare diseases and pave the way for improved diagnostic and therapeutic strategies.
Rare diseases affect over three hundred million individuals globally. Investment in research and development remains incommensurate with the challenges rare diseases pose. Further investment in information sharing platforms to promote common and standardized network technologies for rare disease is needed. Rare disease R&D generates information and assets that spill over in other ways, providing benefits that may not be apparent to investors ex ante. Analytical and computational methods recently applied at scale are promising. One important way of achieving efficiencies of scale in R&D is clustering rare diseases into groups with similar traits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.