Abstract. The biogeochemical behavior of carbon in the forested watersheds of the Hubbard Brook Experimental Forest (HBEF) was analyzed in long-term studies. The largest pools of C in the reference watershed (W6) reside in mineral soil organic matter (43% of total ecosystem C) and living biomass (40.5%), with the remainder in surface detritus (14.5%). Repeated sampling indicated that none of these pools was changing significantly in the late-1990s, although high spatial variability precluded the detection of small changes in the soil organic matter pools, which are large; hence, net ecosystem productivity (NEP) in this 2nd growth forest was near zero (± about 20 g C/m 2 -yr) and probably similar in magnitude to fluvial export of organic C. Aboveground net primary productivity (ANPP) of the forest declined by 24% between the late-1950s (462 g C/m 2 -yr) and the late-1990s (354 g C/m 2 -yr), illustrating age-related decline in forest NPP, effects of multiple stresses and unusual tree mortality, or both. Application of the simulation model PnET-II predicted 14% higher ANPP than was observed for 1996-1997, probably reflecting some unknown stresses. Fine litterfall flux (171 g C/m 2 -yr) has not changed much since the late-1960s. Because of high annual variation, C flux in woody litterfall (including tree mortality) was not tightly constrained but averaged about 90 g C/m 2 -yr. Carbon flux to soil organic matter in root turnover (128 g C/m 2 -yr) was only about half as large as aboveground detritus. Balancing the soil C budget requires that large amounts of C (80 g C/m 2 -yr) were transported from roots to rhizosphere carbon flux. Total soil respiration (TSR) ranged from 540 to 800 g C/m 2 -yr across eight stands and decreased with increasing elevation within the northern hardwood forest near W6. The watershedwide TSR was estimated as 660 g C/m 2 -yr. Empirical measurements indicated that 58% of TSR occurred in the surface organic horizons and that root respiration comprised about 40% of TSR, most of the rest being microbial. Carbon flux directly associated with other heterotrophs in the HBEF was minor; for example, we estimated respiration of soil microarthropods, rodents, birds and moose at about 3, 5, 1 and 0.8 g C/m 2 -yr, respectively, or in total less than 2% of NPP. Hence, the effects of other heterotrophs on C flux were primarily indirect, with the exception of occasional 2 -yr) were small, larger quantities of C were transported within the ecosystem and a more substantial fraction of dissolved C was transported from the soil as inorganic C and evaded from the stream as CO 2 (4.0 g C/m 2 -yr). Carbon pools and fluxes change rapidly in response to catastrophic disturbances such as forest harvest or major windthrow events. These changes are dominated by living vegetation and dead wood pools, including roots. If biomass removal does not accompany large-scale disturbance, the ecosystem is a large net source of C to the atmosphere (500-1200 g C/m 2 -yr) for about a decade following disturbance and becomes a net si...