Ecosystem Size Drives Patterns and Control Mechanisms of Mixotrophs Success Across Tropical Lakes: A Large-Scale Assessment of the Grand Écart Hypothesis
Mariana R. A. Costa,
Leticia B. Quesado,
Regina L. G. Nobre
et al.
Abstract:Mixotrophy, a physiological trait combining autotrophy and heterotrophy in one organism, significantly contributes to energy and matter transfer in aquatic ecosystems. However, understanding how environmental factors influence mixoplankton success across freshwater ecosystems has been uncertain. The grand écart hypothesis (GEH) posits that light and nutrient availability are key components of mixotrophs' niche, suggesting that ecosystem properties determine opposing gradients of light and nutrients, creating e… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.