As graphene-based materials (GBMs) such as pristine graphene, graphene oxide, and reduced graphene oxide show great potential to be integrated in various applications, the need for environmental risk assessments grows, aiming to navigate the environmental fate and potential risk of the different forms of GBM. This study used dynamic probabilistic material flow analysis (DPMFA) to ascertain the prospective production volumes and distribution of GBMs within European freshwaters. The hazard assessment leveraged 113 data sets from peer-reviewed studies, addressing aquatic ecotoxicity across 26 species, by performing probabilistic species sensitivity distributions (SSD). Our findings reveal distinct environmental distribution patterns for GBM forms with predicted environmental concentrations in European freshwaters by 2030 of approximately 0.67 ng/L (SD = 0.24 ng/L) for pristine graphene and 0.33 ng/L (SD = 0.10 ng/L) for both graphene oxide and reduced graphene oxide, suggesting not only similar but notably minimal exposure levels. The risk characterization ratios (RCRs) for all forms of GBM were significantly below 1, indicating a negligible environmental risk within the scenarios assessed. Through detailed analysis considering the forms of the material, this research can inform regulatory decisions, support sustainable material design, and provide a solid foundation for a further investigation considering the environmental fate of GBM.