Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
BackgroundDrought constitutes a major abiotic stress factor adversely affecting plant growth and productivity. Plant-microbe symbiotic associations have evolved regulatory mechanisms to adapt to environmental stress conditions. However, the interactive effects of different fungi on host growth and stress tolerance under drought conditions remain unclear.ObjectiveThis study explored the effects of varying polyethylene glycol (PEG-6000) concentrations (0%, 15%, 25%, and 35%) on the growth and physiological responses of two ectomycorrhizal fungi (Suillus granulatus (Sg) and Pisolithus tinctorius (Pt)) and two dark septate endophytes (Pleotrichocladium opacum (Po) and Pseudopyrenochaeta sp. (Ps)) isolated from the root system of Pinus tabuliformis. Specifically, the study aimed to evaluate six inoculation treatments, including no inoculation (CK), single inoculations with Sg, Pt, Po, Ps, and a mixed inoculation (Sg: Pt : Po: Ps = 1:1:1:1), on the growth and physiological characteristics of P. tabuliformis seedlings under different water regimes: well-watered at 70% ± 5%, light drought at 50% ± 5%, and severe drought at 30% ± 5% of the maximum field water holding capacity.ResultsAll four fungi exhibited the capacity to cope with drought stress by enhancing antioxidant activities and regulating osmotic balance. Upon successful root colonization, they increased plant height, shoot biomass, root biomass, total biomass, and mycorrhizal growth response in P. tabuliformis seedlings. Under drought stress conditions, fungal inoculation improved seedling drought resistance by increasing superoxide dismutase and catalase activities, free proline and soluble protein contents, and promoting nitrogen and phosphorus uptake. Notably, mixed inoculation treatments significantly enhanced antioxidant capacity, osmotic adjustment, and nutrient acquisition abilities, leading to superior growth promotion effects under drought stress compared to single inoculation treatments.ConclusionAll four fungi tolerated PEG-induced drought stress, with increased antioxidant enzyme activities and osmotic adjustment substances and they promoted the growth and enhanced drought resistance of P. tabuliformis seedlings.
BackgroundDrought constitutes a major abiotic stress factor adversely affecting plant growth and productivity. Plant-microbe symbiotic associations have evolved regulatory mechanisms to adapt to environmental stress conditions. However, the interactive effects of different fungi on host growth and stress tolerance under drought conditions remain unclear.ObjectiveThis study explored the effects of varying polyethylene glycol (PEG-6000) concentrations (0%, 15%, 25%, and 35%) on the growth and physiological responses of two ectomycorrhizal fungi (Suillus granulatus (Sg) and Pisolithus tinctorius (Pt)) and two dark septate endophytes (Pleotrichocladium opacum (Po) and Pseudopyrenochaeta sp. (Ps)) isolated from the root system of Pinus tabuliformis. Specifically, the study aimed to evaluate six inoculation treatments, including no inoculation (CK), single inoculations with Sg, Pt, Po, Ps, and a mixed inoculation (Sg: Pt : Po: Ps = 1:1:1:1), on the growth and physiological characteristics of P. tabuliformis seedlings under different water regimes: well-watered at 70% ± 5%, light drought at 50% ± 5%, and severe drought at 30% ± 5% of the maximum field water holding capacity.ResultsAll four fungi exhibited the capacity to cope with drought stress by enhancing antioxidant activities and regulating osmotic balance. Upon successful root colonization, they increased plant height, shoot biomass, root biomass, total biomass, and mycorrhizal growth response in P. tabuliformis seedlings. Under drought stress conditions, fungal inoculation improved seedling drought resistance by increasing superoxide dismutase and catalase activities, free proline and soluble protein contents, and promoting nitrogen and phosphorus uptake. Notably, mixed inoculation treatments significantly enhanced antioxidant capacity, osmotic adjustment, and nutrient acquisition abilities, leading to superior growth promotion effects under drought stress compared to single inoculation treatments.ConclusionAll four fungi tolerated PEG-induced drought stress, with increased antioxidant enzyme activities and osmotic adjustment substances and they promoted the growth and enhanced drought resistance of P. tabuliformis seedlings.
Bacterial wilt of tomatoes, caused by Ralstonia solanacearum, is a significant soilborne disease that often causes significant reductions in the yield of tomatoes. Dark septate endophytic fungi (DSE) represent potential biocontrol agents against plant pathogens that can also enhance plant growth. To collect DSE fungi with potential for biocontrol, the fungus Cladophialophora guangxiense HX2 was isolated from the rhizosphere soil of sugarcane in Hengzhou Guangxi Province, China, and a novel species of Cladophialophora was identified based on morphological properties and DNA sequence analysis. C. guangxiense HX2 demonstrated a controlling effect of 76.7% on tomato bacterial wilt and promoted a 0.5-fold increase in tomato seedling height. It colonized tomato seedling roots, enhancing the activity of antioxidant and defensive enzyme systems. Transcriptomic and qPCR approaches were used to study the induction response of the strain HX2 infection by comparing the gene expression profiles. Gene ontology (GO) and Kyoto Encyclopedia of Gene and Genome (KEGG) pathway enrichment revealed that tomatoes can produce salicylic acid metabolism, ethylene-activated signaling, photosynthesis, and phenylpropanoid biosynthesis to the strain HX2 infection. The expression of IAA4 (3.5-fold change), ERF1 (3.5-fold change), and Hqt (1.5-fold change) was substantially enhanced and Hsc 70 (0.5-fold change) was significantly reduced in the treatment group. This study provides a theoretical foundation for further investigation into the potential of C. guangxiense HX2 as a biological agent for the prevention and control of tomato bacterial wilt.
Native ectomycorrhizal fungi (ECMF) are generally more effective than non-native ECMF in facilitating the phytoremediation of heavy metal (HM) ions from contaminated soils. This study aimed to investigate the contributions of four ECMF species—Suillus luteus, Suillus flavidus, Suillus variegatus, and Gomphidius glutinosus—that were isolated from mining areas to the growth, water status, photosynthesis, and metallothionein gene expression of Populus alba exposed to varying concentrations of lead (Pb). The experiment lasted two months and involved P. alba cuttings subjected to Pb concentrations of 0, 200, and 400 mg kg−1, representing no Pb stress, moderate Pb stress, and severe Pb stress, respectively. Results indicated that S. flavidus significantly enhanced the growth, water status, photosynthesis parameters, and metallothionein gene expression of P. alba under Pb stress, whereas S. luteus only exhibited positive effects under severe Pb stress. S. variegatus negatively affected the growth, water status, photosynthesis, and metallothionein gene expression of P. alba under Pb stress, while no significant difference was observed between the control treatment and G. glutinosus symbiosis. Therefore, S. flavidus and S. luteus are promising ECMF species for ecological restoration in mining areas, especially in P. alba woodlands.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.