Cysteine proteinases (thiol) carry out diverse and critical functions in plants through their ability to hydrolyze peptide bonds in target proteins. Here, we cloned a cysteine proteinase gene designated VaCP17 from a highly cold-resistant wild Vitis amurensis accession 'Shuangyou', and then its potential function in cold resistance was investigated. The results showed that the CDS of VaCP17 is 1404 bp, encoding 467 amino acids, the VaCP17 protein localized to the cell membrane. Expression of CP17 was highly distinctive among different structures of 'Shuangyou' and the cold-sensitive Vitis vinifera cultivar 'Red Globe', with the highest expression in the stem of 'Shuangyou' and the ower of 'Red Globe'. Arabidopsis plants constitutively expressing a VaCP17-GREEN FLUORESCENT PROTEIN fusion (35S::VaCP17-GFP) showed increased survival after transient exposure to freezing (-6℃), and showed lower electrolyte leakage and MDA content, higher soluble sugar content and SOD, POD and CAT activities, as compared with non-transgenic Arabidopsis controls. The expression of nine cold-resistance related genes (CBF1, CBF2, CBF3, RD29A, COR15A, KIN1, NCED3, AOC1 and JAZ10) in 35S::VaCP17-GFP plants was increased under cold treatment at 4℃, relative to control plants. Using a yeast two-hybrid system, we identi ed VaNAC72, VaCAM7 and VaDi19 as potential interactors of VaCP17, and their interactions were demonstrated by a bimolecular uorescence complementation assay. In conclusion, we revealed that VaCP17 can enhance cold resistance by in uencing physiology and biochemistry and the expression of cold resistance related genes under cold stress.