[1] Oceanic eddies are active and energetic southwest of Taiwan. The formation and propagation of eddies in this area were investigated using 17 year satellite altimeter data. Cyclonic eddies (CEs) and anticyclonic eddies (ACEs) often coexisted, but there were more CEs than ACEs generated during the period from October 1992 to October 2009. ACEs were stronger and, in general, lived longer than CEs. ACEs occurred more often in winter than in other seasons, while CEs were more frequent in summer. Compared with the direct local wind forcing, the Kuroshio path variability appears to be a dominant factor for eddy formation in this area. A conceptual model of an eddy-Kuroshio interaction is proposed. In summer, there exists an outflow northwest of Luzon Island, and the Kuroshio likely leaps across the Luzon Strait. To the north of the outflow and left of the Kuroshio axis, CEs are often formed, which in turn induce ACEs to the west of CEs. In winter, under the influence of northeasterly monsoon, the Kuroshio Current Loop (KCL) appears southwest of Taiwan more frequently than in other seasons, and ACEs are frequently shed from the KCL. Most of the ACEs propagate westward, and, as a result, CEs are often spun up to the east of the ACEs. The surface South China Sea outflow in summer and the KCL in winter are, however, likely related to the monsoons. Therefore, the indirect effects of monsoon winds are also evident in the seasonal variations of eddy occurrence.