An integral equation reformulation of the Maxwell transmission problem is presented. The reformulation uses techniques such as tuning of free parameters and augmentation of close-to-rank-deficient operators. It is designed for the eddy current regime and works both for surfaces of genus 0 and 1. Well-conditioned systems and field representations are obtained despite the Maxwell transmission problem being ill-conditioned for genus 1 surfaces due to the presence of Neumann eigenfields. Furthermore, it is shown that these eigenfields, for ordinary conductors in the eddy current regime, are different from the more well-known Neumann eigenfields for superconductors. Numerical examples, based on the reformulation, give an unprecedented 13-digit accuracy both for transmitted and scattered fields.