The continuing growth in information demand from fixed and mobile end-users, coupled with the need to deliver this content in an economically viable manner, is driving new innovations in access networks. In particular, it is becoming increasingly important to find new ways to enable the coexistence of heterogeneous services types which may require different signal modulation formats over the same fiber infrastructure. For example, the same physical layer can potentially be used to deliver shared 10Gb/s services to residential customers, dedicated point-to-point (P2P) 100Gb/s services to business customers, and wireless fronthaul, in a highly cost-effective manner. In this converged scenario, the performance of phase modulated signals can be heavily affected by nonlinear crosstalk from co-propagating on-off-keying (OOK) channels. In this paper, the overlay of a 100G P2P dual-polarization quadrature phase-shift keying (DP-QPSK) channel in a long-reach passive optical network (LR-PON) in the presence of co-propagating 10Gb/s OOK neighboring channels is studied for two different PON topologies. The first LR-PON topology is particularly suited for densely populated areas while the second is aimed at rural, sparsely populated areas. The experimental results indicate that with an emulated load of 40 channels the urban architecture can support up to 100km span and 512 users, while the rural architecture can support up to 120km span and 1024 users. Finally, a system model is developed to predict the system performance and system margins for configurations different from the experimental setups and to carry out design optimization that could in principle lead to even more efficient and robust schemes.