Edge and dense attention U-net for atrial scar segmentation in LGE-MRI
Gaoyuan Li,
Mingxin Liu,
Jun Lu
et al.
Abstract:The segmentation of atrial scars in LGE-MRI images has huge potential value for clinical diagnosis and subsequent treatment. In clinical practice, atrial scars are usually manually calibrated by experienced experts, which is time-consuming and prone to errors. However, automatic segmentation also faces difficulties due to myocardial scars' small size and variable shape. The present study introduces a dual branch network, incorporating edge attention, and deep supervision strategy. Edge attention is introduced … Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.