Edge detection is one of the challenging problems in image processing. Four different classical edge detection methods—Sobel, Prewitt, Roberts, and Canny—and type-1 and type-2 fuzzy logic-based edge detection methods are applied to analyze two separate datasets with various properties. The datasets are STARE which contains medical images of the retina and BIPED which contains images of the street. Furthermore, two separate hybrid fuzzy logic methods are implemented. The type-1 and type-2 fuzzy inference techniques are combined to produce the hybrid-1 and hybrid-2 approaches, using the "AND" and "OR" logic operators. We compare the simulation results for each technique using three different image quality metrics. These are Mean Square Error (MSE), Peak Signal Noise Ratio (PSNR), and Structural Similarity Index (SSIM). The type-2 fuzzy technique outperformed the hybrid-1 fuzzy method in visual quality metrics comparison, demonstrating superior blood vessel recognition on the STARE retinal image dataset—a dataset that more closely resembles the human visual system. Using the BIPED street image dataset, the hybrid-1 fuzzy approach outperformed the Roberts method. The hybrid-1 fuzzy technique showed good results in the second order for both kinds of datasets. Any data and general applications can take advantage of it.