2015 23nd Signal Processing and Communications Applications Conference (SIU) 2015
DOI: 10.1109/siu.2015.7129940
|View full text |Cite
|
Sign up to set email alerts
|

Edge detection on MR images with Marr-Hildreth method extended to third dimension

Abstract: Özetçe -Bu çalışmada çogunlukla iki boyutlu (2-B) görüntüler üzerinde kullanılan Marr-Hildreth yöntemi, üç boyutlu (3-B) görüntülerde çalışmak üzere genişletilmiştir. Aynı yöntemin 3-B, kesit bazında çalışan 2-B, ve hesaba ait karmaşıklıgı azaltan hızlandırılmış 3-B uyarlamalarının Osteoartrit Girişimi veri tabanından alınan diz MR görüntülerine uygulanmasıyla elde edilen sonuçlar karşılaştırılmış, 3-B Marr-Hildreth yöntemlerinin kesit bazında çalışan 2-B Marr-Hildreth yönteminin buldugu kenarları da tespit et… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2019
2019
2022
2022

Publication Types

Select...
1
1

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(1 citation statement)
references
References 10 publications
0
1
0
Order By: Relevance
“…Furthermore, other methods to detect edges can be used [16], some based on gradient operators as: Canny operator [17], Prewitt operator [18] and Roberts operator [19]. Other methods can be based on the use of Laplacian operators: Marr-Hildreth [20] or Zero Cross [21]. As a last limitation we should expose the lack of rain images used in the dataset that could reduce the performance of the model as a classification system.…”
Section: Discussion and Future Workmentioning
confidence: 99%
“…Furthermore, other methods to detect edges can be used [16], some based on gradient operators as: Canny operator [17], Prewitt operator [18] and Roberts operator [19]. Other methods can be based on the use of Laplacian operators: Marr-Hildreth [20] or Zero Cross [21]. As a last limitation we should expose the lack of rain images used in the dataset that could reduce the performance of the model as a classification system.…”
Section: Discussion and Future Workmentioning
confidence: 99%