Edge drop prediction of hot-rolled silicon steel based on a mechanism and data model
Qiuna Wang,
Lebao Song,
Hainan He
et al.
Abstract:In this article, a high-precision edge drop prediction model for hot-rolled silicon steel based on a rolling mechanism and deep neural network (DNN) is proposed. Considering the initial roll shape, roll wear and roll thermal expansion, a mechanism model of the roll system is established according to the hot rolling 4-high finishing mill. In order to reduce the data dimension and effectively improve the prediction accuracy, the random forest algorithm is employed to analyse the feature parameters that affect th… Show more
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.