In order to understand the formation history and mechanism of volcanoes and their related structures, including calderas, their subsurface structures play an important role. In recent years, gravity gradiometry survey has been introduced, and new analyses techniques for gravity gradient tensors obtained by the survey have been developed. In this chapter, we first describe the gravity gradient tensor and its characteristics, and the method for obtaining the tensor from the gravity anomaly. Next, we review the semiautomatic interpretation methods for extracting information on subsurface structures, and apply some of the techniques to the volcanic zone of central Kyushu, Japan. The results showed that the horizontal and vertical gravity gradient methods, and the CLP method were useful for extracting outlines of important volcanic and tectonic structures in this region. Using the maximum eigenvector of the gravity gradient tensor, the caldera wall dip of the Aso caldera was successfully estimated to be in the range of 50-70°, and the dip of the Median Tectonic Line which was the largest tectonic line in the southwest Japan was consistent with seismic reflection surveys. In addition, a large circular structure surrounding the Shishimuta caldera with a diameter of 35 km was distinguished in some analyses.